Evaluation of the chemical reactions from two electrogenerated species in picoliter volumes by scanning electrochemical microscopy.
نویسندگان
چکیده
The volume created by the positioning of two scanning electrochemical microscope (SECM) probes (tip and substrate) at a micrometric distance defines a "picoliter beaker" where homogeneous electron-transfer reactions are studied. The SECM is used to concurrently electrogenerate in situ two reactive species and to evaluate the possibility of detecting their reactivity. Two reaction cases are studied: the first, called the "reversible case", occurs when the electrochemically generated species at the substrate electrode can also react at the tip to yield the same product as the reaction in the gap. The second case, named the "irreversible case", occurs when the electrochemically generated species at the substrate are not able to react at the tip. Digital simulations are performed and compared to experimental studies. These show that an unusual compensation between collection and feedback effects render the analysis inapplicable in the "reversible case". The "irreversible case" is shown experimentally.
منابع مشابه
Mitoxantrone removal by electrochemical method: A comparison of homogenous and heterogenous catalytic reactions
Background: Mitoxantrone (MXT) is a drug for cancer therapy and a hazardous pharmaceutical to the environment which must be removed from contaminated waste streams. In this work, the removal of MXT by the electro-Fenton process over heterogeneous and homogenous catalysts is reported. Methods: The effects of the operational conditions (reaction medium pH, catalyst concentration and utilized cur...
متن کاملScanning Electrochemical Microscopy. 37. Light Emission by Electrogenerated Chemiluminescence at SECM Tips and Their Application to Scanning Optical Microscopy
Electrogenerated chemiluminescence (ECL) at a scanning electrochemical microscope (SECM) tip as the tip was moved in the vicinity of insulating and conductive substrates was studied either by ion annihilation or with a coreactant. The SECM/ECL approach curves (intensity vs tip-substrate distance, d) with both insulating and conducting substrates showed a decrease in ECL intensity with a decreas...
متن کاملElectrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)
PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...
متن کاملFe3O4 Magnetic Nanoparticles/ Graphene Oxide Nanosheets/Carbon Cloth as an Electrochemical Sensing Platform
In this work, for eliminating the (RR1346), considered to be a waste in wastewater from dye industries electrochemical advanced oxidation process has been used. Graphene oxide coated carbon cloth (GO/CC) and Fe3O4 /GO coated carbon cloth (Fe3O4/GO/CC) electrodes has been fabricated by synthesized GO and Fe3O4 nanoparticles. Characteristic properties such as surface morphology as the main reason...
متن کاملInterrogation of surfaces for the quantification of adsorbed species on electrodes: oxygen on gold and platinum in neutral media.
We introduce a new in situ electrochemical technique based on the scanning electrochemical microscope (SECM) operating in a transient feedback mode for the detection and direct quantification of adsorbed species on the surface of electrodes. A SECM tip generates a titrant from a reversible redox mediator that reacts chemically with an electrogenerated or chemically adsorbed species at a substra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemphyschem : a European journal of chemical physics and physical chemistry
دوره 11 13 شماره
صفحات -
تاریخ انتشار 2010